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Conférences plénières

Parcimonie et problèmes inverses

Nelly Pustelnik (CNRS, ENS Lyon)

Résumé : La première partie de cet exposé détaillera les avancées majeures en problèmes
inverses qui découlent de la notion de parcimonie et requièrent à la fois des représentations so-
phistiquées (trames, variation totale non locale,. . . ) et des algorithmes adaptés (algorithmes prox-
imaux). Nous présenterons ensuite une contribution récente utilisant la notion de parcimonie dans
le modèle de Mumford-Shah permettant de combiner les étapes de restauration et de détection de
contours. Plus précisément, nous proposons une adaptation de l’algorithme PALM pour résoudre
une version discrète du problème de Mumford-Shah.

Parcimonie et dictionnaires continus - un point de vue variationnel

Vincent Duval (INRIA, Equipe Mokaplan)

Résumé : De nombreux problèmes inverses en traitement du signal et des images visent à
reconstruire des objets qui vivent dans un domaine continu (fréquence d’un signal, position d’un
point lumineux, contour d’un objet...). Une pratique courante consiste à introduire une grille dis-
crète pour décrire et manipuler ces objets sur ordinateur, et éventuellement résoudre dans ce cadre
un problème variationnel . Cet exposé portera sur des approches variationnelles sans grille, ap-
parues récemment autour de la minimisation L1 (LASSO, basis pursuit). On travaille alors avec un
dictionnaire continu, et le problème d’optimisation associé est formulé dans l’espace des mesures
(de Radon). Pour les problèmes de déconvolution et de super-résolution, nous verrons que cette
formulation continue, a priori moins accessible du point de vue de la théorie et de l’implémentation
numérique, permet en fait de lever plusieurs limitations des modèles discrets, que ce soit en terme
de garanties théoriques ou de performance algorithmique, et de poser un regard nouveau sur le
comportement des problèmes discrets utilisés depuis bien longtemps.
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Approche bayésienne de type Approximate

Message Passing pour la localisation de source en

milieu fluctuant.

Guillaume Beaumont1, Ronan Fablet2, Angélique Drémeau1

March 2018

1Lab-STICC UMR 6285, CNRS, ENSTA Bretagne, Brest, F-29200, France
2Lab-STICC UMR 6285, CNRS, IMT-Atlantique, Brest F-29200, France

Abstract

En acoustique sous-marine, la propagation d’une onde peut être grande-
ment perturbée par les fluctuations du milieu de propagation.

Plus spécifiquement, les mesures de phase du champ de pression com-
plexe peuvent alors être fortement perturbées et mettre en échec les al-
gorithmes classiques d’estimation de direction d’arrivée. Ces fluctuations
ont cependant largement été étudiées dans la littérature et ont permis
de définir des statistiques sur l’impact de cette perturbation sur le signal
acoustique reçu.

Dans ces travaux nous proposons une nouvelle approche bayésienne
capable de prendre en compte cette perturbation sous la forme d’un a
priori sur nos mesures. Ce modèle combiné à un a priori parcimonieux
sur le nombre de directions d’arrivées nous permet d’obtenir une méthode
hautement-résolue d’estimation des directions d’arrivées. Cette méthode
est basée sur un algorithme de type Approximate Message Passing nommé
“paSAMP ‘’ (pour phase-aware Swept Approximate Message Passing)
et peut être considéré comme une extension de l’algorithme de phase-
retrieval “prSAMP” aux a priori informatifs sur le bruit de phase.

Testés sur données simulées reproduisant ces perturbations du mi-
lieu, paSAMP s’avère intégrer avec succès ce modèle génératif et offre de
meilleures performances en terme de restitution des directions d’arrivée
que d’autres approches conventionnelles (e.g. beamforming classique,
MUSIC). De plus, il se révèle être plus robuste au bruit additif (type
blanc gaussien) que d’autres méthodes variationnelles basées sur ce même
modèle (e.g. exploitant une approximation de champ moyen).
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A case of exact recovery using OMP with continuous
dictionaries

Clément Elvira(1), Rémi Gribonval(1), Cédric Herzet(1) et Charles Soussen(2)

(1) Univ Rennes, Inria, CNRS, IRISA
mails : prenom.nom@inria.fr

(2) L2S - Laboratoire des signaux et systèmes
mail : charles.soussen@centralesupelec.fr

We present new theoretical results on sparse recovery guarantees for a greedy algorithm, orthogonal matching
pursuit (OMP), in the context of continuous dictionaries. Consider a sparse linear combination of atoms
from a dictionary parameterized by some real parameters, for example, a combination of shifted versions of a
basic waveform as in the context of sparse spike deconvolution. Currently, performance guarantees for greedy
algorithms are typically carried out in the discrete setting associated to a grid of atom parameters, and based
on, e.g., the coherence of the considered discretized dictionary [1]. However, such analyses fail to be conclusive
for grid-based approaches when the discretization step tends to zero, as the coherence goes to one. Instead, our
analysis is directly conducted in the continuous setting. For atoms parametrized by a real parameter that are
elements of the (infinite-dimensional) Hilbert space L2(R) of square integrable real functions, and such that the
inner product between two atoms is the exponential of the negative absolute difference of the corresponding
parameters, we show in the noise-free setting that OMP exactly recovers the atom parameters as well as their
amplitudes, regardless of the number of distinct atoms. We exhibit a convolutive dictionary of exponentially
decaying pulses for which the atoms have an analytic definition while their pairwise inner products have the
prescribed form. The established guarantees rely on a proof technique which is the continuous equivalent of
Tropp’s Exact Recovery Condition (ERC) [1]. The proof exploits specific properties of the positive definite kernel
between atom parameters defined by the inner product between the corresponding atoms. Future work will
aim at characterizing the class of kernels for which such an analysis holds –in particular for higher dimensional
parameters– and the compatibility of the guarantees with dimension reduction techniques such as sketching,
which would pave the way to provably good greedy algorithms for compressive statistical learning [2]. In light of
the existing links between Tropp’s ERC and recovery guarantees for ℓ1 minimization [3], an interesting question
is whether these guarantees extend to sparse spike recovery with total variation norm minimization [4, 5].
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Non-negative orthogonal greedy algorithms for sparse

reconstruction

Thanh T. Nguyen, Jérôme Idier, Charles Soussen, El-Hadi Djermoune

March 13, 2018

In this communication, we address sparse approximation under non-negativity constraints, formulated as
the `0 minimization problem:

min
x
‖y −Hx‖22 subject to

{
‖x‖0 ≤ K , x ≥ 0

}

We introduce a family of greedy algorithms, so-called Non-Negative Orthogonal Greedy (NNOG) algorithms,
having the following structure:

1. Selection of a dictionary atom.

2. Sparse coefficient update by solving a Non-Negative Least Squares (NNLS) subproblem.

3. Support compression.

This family covers, among others, Non-Negative Orthogonal Matching Pursuit (NNOMP) [1] and the Non-
Negative Orthogonal Least Squares versions (NNOLS, SNNOLS) introduced in [2]. The main structural differ-
ence between NNOG and the standard orthogonal greedy algorithms is the inclusion of the support compression
step. Indeed, the sparse representation coefficients obtained when solving the NNLS subproblems are likely to
vanish when non-negativity constraints are active (that is, when xi = 0). This motivated us to propose the
support compression step, which removes the zero-valued coefficients from the support. The support compres-
sion step was omitted in earlier works [1, 2] and enables us to maintain consistency between the support and
iterates, and also to yield residual vectors that are orthogonal to the span of the selected atoms.

Just like standard orthogonal greedy algorithms in the unconstrained case, NNOG algorithms can be inter-
preted as descent algorithms aiming to minimize the approximation error ‖y −Hx‖22. On the implementation
viewpoint, the main difference with the unconstrained case is the need for solving NNLS subproblems at each
iteration instead of unconstrained least squares subproblems. Unfortunately, NNLS subproblems do not have a
closed-form solution. We thus propose to make use of the active-set implementation of Lawson and Hanson [3]
with a warm start initialization, corresponding to the current NNOG iterate. Since the active-set algorithm has
a greedy structure, the resulting NNOG implementations appear to be recursive and fully greedy. Numerical
tests on sparse deconvolution problems confirm the efficiency of the proposed implementations. The NNOG
algorithms are also compared in term of tradeoff computational time vs sparse support reconstruction accuracy
on both simulated and real data.
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Structured sparsity in inverse problems and support recovery
with mirror-stratifiable functions

Guillaume GARRIGOS Jalal FADILI
École Normale Supérieure ENSICAEN, CNRS

Jérôme MALICK Gabriel PEYRÉ
CNRS, LJK École Normale Supérieure, CNRS

Lorenzo ROSASCO Silvia VILLA
Università degli Studi di Genova Politecnico di Milano

Résumé. We consider inverse problems in separable Hilbert spaces where
the prior on the data is an assumption of structured sparsity. We look at a
class of regularizers for which minimization algorithms identify in finite time
the extended support of the original data. This is a direct consequence of
a more general identification theorem, involving the mirror stratifiability of
the regularizer, a notion developped in [1], and based on duality arguments.
As a by-product, we derive improved rates of convergence for the minimiza-
tion algorithms, like a new linear rate result for the soft-thresholding algo-
rithm in `2(N) with no assumptions. We discuss as well whether stochastic
algorithms can (or cannot) enjoy this identification property.
We then provide necessary and sufficient conditions for norm regularizers
to be mirror stratifiable, and show its tight relationship with the geometry
of the corresponding unit ball. We apply this characterization result to
show that norm regularizers inducing group sparsity with overlap are not
mirror-stratifiable. We then discuss how to adapt the notion of mirror-
stratifiability to treat these regularizers.

Mots-clefs : Sparse inverse problems, support recovery, group sparsity, optimization algo-
rithms
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Abstract—We study a deep matrix factorization problem. It takes as
input the matrix X obtained by multiplying K matrices (called factors)
and aims at recovering the factors. When K = 1, this is the usual
compressed sensing framework; K = 2: Examples of applications are
dictionary learning, blind deconvolution, self-calibration; K ≥ 3: can be
applied to many fast transforms (such as the FFT). In particular, we
apply the theorems to deep convolutional network.

Using a Lifting, we provide : a necessary and sufficient conditions
for the identifiability of the factors (up to a scale indeterminacy); -
an analogue of the Null-Space-Property, called the Deep-Null-Space-
Property which is necessary and sufficient to guarantee the stable
recovery of the factors.

The long article corresponding to this work is available in [1].

I. INTRODUCTION

Let K ∈ N∗, m1 . . .mK+1 ∈ N, write m1 = m, mK+1 = n. We
impose the factors to be structured matrices defined by a (typically
small) number S of unknown parameters. More precisely, for k =
1 . . .K, let

Mk : RS −→ Rmk×mk+1 ,

h 7−→ Mk(h)

be a linear map.
We assume that we know the matrix X ∈ Rm×n which is provided

by
X = M1(h1) · · ·MK(hK) + e, (1)

for an unknown error term e and parameters h = (hk)1≤k≤K ∈
ML ⊂ RS×K for some L, where we assume that we know a
collection of models M = (ML)L∈N such that, for every L,
ML ⊂ RS×K .

This work investigates models/constraints imposed on (1) for which
we can (up to obvious scale rearrangement) identify or stably recover
the parameters h from X . A preliminary version of this work is
presented in [2].

Set NK = {1, . . . ,K} and

RS×K
∗ = {h ∈ RS×K ,∀k ∈ NK , ‖hk‖ 6= 0}.

Define an equivalence relation in RS×K
∗ : for any h, g ∈ RS×K ,

h ∼ g if and only if there exists (λk)k∈NK ∈ RK such that

K∏

k=1

λk = 1 and ∀k ∈ NK ,hk = λkgk.

Denote the equivalence class of h ∈ RS×K
∗ by [h]. We consider a

metric denoted dp on RS×K
∗ / ∼. It is based on the lp norm.

We say that a tensor T ∈ RSK

is of rank 1 if and only if there
exists a collection of vectors h ∈ RS×K such that T is the outer
product of the vectors hk, for k ∈ NK , that is, for any i ∈ NK

S ,

Ti = h1,i1 . . .hK,iK .

The set of all the tensors of rank 1 is denoted by Σ1.
Moreover, we parametrize Σ1 ⊂ RSK

by the Segre embedding

P : RS×K −→ Σ1 ⊂ RSK

h 7−→ (h1,i1h2,i2 . . .hK,iK )i∈NK
S

Following [3], [4], [5], [6], [7], [8] where problems such that K =
2 are studied, we can lift the problem and show that the map

(h1, . . . ,hK) 7−→M1(h1)M2(h2) . . .MK(hK),

uniquely determines a linear map

A : RSK −→ Rm×n,

such that for all h ∈ RS×K

M1(h1)M2(h2) . . .MK(hK) = AP (h).

When ‖e‖ = 0, we can prove that every element of h ∈ M is
identifiable (i.e. the elements of [h] are the only solutions of (1)) if
and only if for any L and L′ ∈ N

Ker (A) ∩
(
P (ML)− P (ML′)

)
= {0}.

When ‖e‖ ≤ δ, we further assume that we have a way to find L∗

and h∗ ∈ML∗ such that, for some parameter η > 0,

‖AP (h∗)−X‖2 ≤ η. (2)

Definition 1. Deep-Null Space Property
Let γ > 0, we say that Ker (A) satisfies the deep-Null Space

Property (deep-NSP ) with respect to the model collection M with
constant γ if there exists ε > 0 such that for any L and L′ ∈ N,
any T ∈ P (ML) − P (ML′) satisfying ‖AT‖ ≤ ε and any T ′ ∈
Ker (A), we have

‖T‖ ≤ γ‖T − T ′‖.

Theorem 1. Sufficient condition for stable recovery
Assume Ker (A) satisfies the deep-NSP with respect to the collec-

tion of models M and with the constant γ > 0. For any h∗ as in
(2) with η and δ sufficiently small, we have

‖P (h∗)− P (h)‖ ≤ γ

σmin
(δ + η),

where σmin is the smallest non-zero singular value of A. Moreover,
if h ∈ RS×K

∗

dp([h∗], [h]) ≤ 7(KS)
1
p γ

σmin
min

(
‖P (h)‖

1
K
−1

∞ , ‖P (h∗)‖
1
K
−1

∞

)
(δ+η).

We also prove that the deep-NSP condition is necessary for the
stable recovery of the factors. We detail how these results can be
applied to obtain sharp conditions for the stable recovery of deep
convolutional network as depicted on Figure 1.
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Fig. 1. Example of the considered convolutional network. To every edge is attached a convolution kernel. The network does not involve non-linearities or
sampling.
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Multichannel Cosparse Declipping: Structure Helps
Clément Gaultier, Nancy Bertin, Rémi Gribonval

Univ Rennes, Inria, CNRS, IRISA, France

Abstract

In this work, we investigate the performance of structured cosparse regularizations in jointly restoring
8-channels saturated audio recordings. Beyond the cosparse (also known as sparse analysis) model, results
show that exploiting structures across channels is beneficial compared to simple use of channel-by-channel
independent cosparse prior.

Motivated by the success of the sparse analysis version of the SPADE algorithm [1] for declipping, as well as the
potential of structured sparsity (especially [2] that was able to capture some typical time-frequency patterns), we
postulate that coupling these two concepts could be beneficial to audio restoration. The main model characteristics for
this work derive from the relation between the time-domain signal of interest X and its frequency representation
Z as well as properties of Z. The underlying hypothesis behind the structure (group sparsity) in the frequency
representation Z is that non zero coefficients are roughly distributed equivalently from one channel to another. This
work compares the performance of structured cosparse models to state-of-the-art regular cosparse method on the
multichannel audio declipping problem.

Cosparse regularized approaches to inverse problems can be cast as an optimization problem, where the cost
function to minimize is a sum of a data-fidelity term and a regularization term enforcing sparsity. To address the
multichannel declipping issue, we define an iterative ADMM procedure [3] in which, the estimate is alternatively
projected on the structured cosparsity constraint and the data-fidelity (declipping) constraint. A well-chosen spar-
sifying operator is applied at each iteration and acts as a proxy for the cosparse regularization term. The choice
of this proxy is the key difference between regular cosparse and structured cosparse algorithms. In the regular
cosparse case, the well-known hard-thresholding operator is applied at each iteration on the current estimate AX̂.
In the structured cosparse case, as we wish to promote some particular structures across channels and frequency,
hard-thresholding is replaced by the Group Empirical Wiener shrinkage. The latter was successfully used in [2] for
signal decomposition. For the data-fidelity projection, we derive a component-wise closed form solution from the
magnitude declipping constraints sets. This procedure, involving alternatively a sparsifying step and data-fidelity
projection is applied on frames. The X̂ declipped estimates are used to rebuild the full length estimated signal by
means of overlap-and-add synthesis.

The joint use of cosparse and structured sparsity models is particularly efficient on music and speech data from
[4] recorded with a 8-channels compact microphones antenna. We show that our method numerically outperforms
state-of-the-art simple cosparse A-SPADE algorithm [1] by 1 dB to more than 3 dB while retaining very limited
runtime overcost.
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A Dual Certificates Analysis of Compressive
Off-the-Grid Recovery

Clarice Poon Nicolas Keriven Gabriel Peyré

Many problems in machine learning and imaging can be framed as an infinite dimensional
Lasso problem to estimate a sparse measure µ0 ∈ M(X ). This includes for instance
regression using a continuously parameterized dictionary, mixture model estimation and
super-resolution of images.

To make the problem tractable, one typically sketches the observations (often called
compressive-sensing in imaging) using randomized projections:

∀ k = 1, . . . ,m, yk
def.
= 〈ϕωk

, µ0〉+ εk where 〈ϕ, µ〉 def.
=

∫

X
ϕ(x)dµ(x) ∈ C,

where εk ∈ C accounts for noise or modelling errors, (ω1, . . . , ωm) are identically and
independently distributed according to some probability distribution Λ(ω) on ω ∈ Ω,
and ϕω : X → C is a continuous function. The studied Lasso problem is:

min
µ∈M(X )

1

2m

m∑

k=1

|〈ϕωk
, µ〉 − yk|2 + λ|µ|(X ).

where |µ|(X ) is the total variation of µ.

In this work, we provide a comprehensive treatment of the recovery performances of
this class of approaches. We show that sufficient conditions can be expressed on the
expectation of the covariance kernel K(x, x′) = Eωϕω(x)ϕω(x′) and a minimal separa-
tion of Diracs, thus extending classical proofs in a generic, possibly multi-dimensional
setting. We give two examples, the Fejér kernel, which corresponds to discrete Fourier
sampling on the (multi-dimensional) torus, and the gaussian kernel, which can be seen
as continuous Fourier sampling with gaussian frequencies.

Then, our main contribution is two-fold:

• we prove that, up to log factors, a number of sketches proportional to the sparsity is
enough to obtain approximate stability (localization of the atoms) with robustness
to noise. The proof introduces a new infinite-dimensional variant of the classical
golfing scheme.

• using more classical proof techniques generalized to our framework, we show that
a number of sketches quadratic in the sparsity is enough to obtain exact support
stability (the number of recovered atoms matches that of the measure of interest)
in the small noise regime. This number can still be linear, under the somewhat
unrealistic assumption that the signs of the sought after Diracs are random.

We finish by giving a few examples, including sketched Gaussian Mixture Model es-
timation. Unlike non-convex log-likelihood approaches, the infinite-dimensional Lasso
may recover exactly the number of components in the mixture when the exact support
stability result applies.
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When Safe Screening and Structured Dictionaries
Join Forces

Cássio Fraga Dantas, Rémi Gribonval
Univ Rennes, Inria, CNRS, IRISA, France

Abstract

We propose a way to combine two existing acceleration techniques for the Lasso problem: safe screen-
ing tests, which simplify the problem by eliminating useless dictionary atoms; and the use of structured
dictionaries which are faster to operate with. A structured approximation of the true dictionary is used at
the initial stage of the optimization, and we show how to define screening tests which are still safe despite
the approximation error. In particular, we extend a state-of-the-art screening test, the GAP SAFE sphere
test, to this new setting. The practical interest of the proposed methodology is demonstrated by considerable
reductions in simulation time.

The l1-regularized least-squares, referred to as Lasso, is a is a ubiquitous tool for variable selection in the context
of underdetermined linear regression problems. Due to its convex cost function, fast solvers with strong theoret-
ical guarantees are available. Nevertheless, for large scale problems such methods may become computationally
prohibitive and, for this reason, accelerating techniques are still an intense research topic.

In this work, we demonstrate how to combine two of such techniques:
1) Structured dictionaries provide faster matrix-vector multiplications, which dominate the cost of typical iterative

optimization algorithms for the Lasso, such as the iterative soft-thresholding algorithms (e.g. ISTA and FISTA).
2) Safe screening tests first proposed in [1] allow to safely eliminate inactive dictionary atoms (those associated

to zero entries in the solution vector) before having complete knowledge of the solution, with minor compu-
tational overhead. In this work, we show how to obtain screening tests that manipulate an approximate (and
faster) version of the true dictionary, but remain safe with respect to the original problem, i.e. to the atoms
of the true dictionary. In [2], we extended a particular screening test called Dynamic Spherical Test [3] to
this new setting, and in [4] we extended a more complex test called GAP SAFE [5] which is the current
state-of-the-art in terms of screening capabilities.

The overall idea is the following: starting the iterative Lasso optimization by manipulating the fast approximate
dictionary to take advantage of its reduced multiplication cost, and at some point – for instance, when a considerable
portion of the atoms have been screened out – switching back to the original dictionary which is now much less
costly to operate with and ensures convergence to the solution of the original problem.

Simulation results on synthetic data proves the effectiveness of the proposed technique. Significant reductions in
execution time are obtained in comparison to screening rules alone, which, in turn, already represent a considerable
improvement with respect to not screening at all. The proposed framework could also be extended to other sparsity-
inducing inverse problems such as the Group-Lasso or the regularized logistic regression. Additional experiments
with real datasets are a short-term perspective as well as handling multiple approximations of the dictionary with
different error levels and complexity gains.
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